Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1340645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533494

RESUMO

Background: The emergence of SARS-CoV-2 variants has raised concerns about the sustainability of vaccine-induced immunity. Little is known about the long-term humoral responses and spike-specific T cell memory to Omicron variants, with specific attention to BA.4/5, BQ.1.1, and XBB.1. Methods: We assessed immune responses in 50 uninfected individuals who received varying three-dose vaccination combinations (2X AstraZeneca + 1X Moderna, 1X AstraZeneca + 2X Moderna, and 3X Moderna) against wild-type (WT) and Omicron variants at eight months post-vaccination. The serum antibody titers were analyzed by enzyme-linked immunosorbent assays (ELISA), and neutralizing activities were examined by pseudovirus and infectious SARS-CoV-2 neutralization assays. T cell reactivities and their memory phenotypes were determined by flow cytometry. Results: We found that RBD-specific antibody titers, neutralizing activities, and CD4+ T cell reactivities were reduced against Omicron variants compared to WT. In contrast, CD8+ T cell responses, central memory, effector memory, and CD45RA+ effector memory T cells remained unaffected upon stimulation with the Omicron peptide pool. Notably, CD4+ effector memory T cells even exhibited a higher proportion of reactivity against Omicron variants. Furthermore, participants who received three doses of the Moderna showed a more robust response regarding neutralization and CD8+ T cell reactions than other three-dose vaccination groups. Conclusion: Reduction of humoral and CD4+ T cell responses against Omicron variants in vaccinees suggested that vaccine effectiveness after eight months may not have sufficient protection against the new emerging variants, which provides valuable information for future vaccination strategies such as receiving BA.4/5 or XBB.1-based bivalent vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Células T de Memória , SARS-CoV-2
2.
J Virol ; 98(2): e0154623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299865

RESUMO

Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.


Assuntos
Proteínas de Bactérias , Vacinas contra COVID-19 , COVID-19 , Imunidade nas Mucosas , Lipídeos , Proteínas Recombinantes de Fusão , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Cricetinae , Camundongos , Adjuvantes Imunológicos , Anticorpos Antivirais/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Receptores de IgG/classificação , Receptores de IgG/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Staphylococcus aureus , Desenvolvimento de Vacinas , Carga Viral
3.
Mol Ther Methods Clin Dev ; 32(1): 101169, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38187094

RESUMO

DNA vaccines for infectious diseases and cancer have been explored for years. To date, only one DNA vaccine (ZyCoV-D) has been authorized for emergency use in India. DNA vaccines are inexpensive and long-term thermostable, however, limited by the low efficiency of intracellular delivery. The recent success of mRNA/lipid nanoparticle (LNP) technology in the coronavirus disease 2019 (COVID-19) pandemic has opened a new application for nucleic acid-based vaccines. Here, we report that plasmid encoding a trimeric spike protein with LNP delivery (pTS/LNP), similar to those in Moderna's COVID-19 vaccine, induced more effective humoral responses than naked pTS or pTS delivered via electroporation. Compared with TSmRNA/LNP, pTS/LNP immunization induced a comparable level of neutralizing antibody titers and significant T helper 1-biased immunity in mice; it also prolonged the maintenance of higher antigen-specific IgG and neutralizing antibody titers in hamsters. Importantly, pTS/LNP immunization exhibits enhanced cross-neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and protects hamsters from the challenge of SARS-CoV-2 (Wuhan strain and the Omicron BA.1 variant). This study indicates that pDNA/LNPs as a promising platform could be a next-generation vaccine technology.

4.
Eur J Med Res ; 28(1): 482, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932817

RESUMO

BACKGROUND: Dengue virus serotype 2 (DENV-2) was the major serotype in the 2015 dengue outbreak in Taiwan, while DENV-1 and DENV-3 were dominant between 2005 and 2014. We aimed to investigate whether DENV-2 contributed to disease severity and mortality in the outbreak in Kaohsiung city, Taiwan. METHODS: We collected serum samples from dengue patients to detect the presence of DENV and determine the serotypes by using quantitative reverse transcription-polymerase chain reaction. Our cohorts comprised 105 DENV-1-infected cases and 1,550 DENV-2-infected cases. Demographic data, DENV serotype, and comorbidities were covariates for univariate and multivariate analyses to explore the association with severity and mortality. RESULTS: The results suggested that DENV-1 persisted and circulated, while DENV-2 was dominant during the dengue outbreak that occurred between September and December 2015. However, DENV-2 did not directly contribute to either severity or mortality. Aged patients and patients with diabetes mellitus (DM) or moderate to severe chronic kidney disease (CKD) had a higher risk of developing severe dengue. The mortality of dengue patients was related to a higher Charlson comorbidity index score and severe dengue. Among DENV-2-infected patients and older patients, preexisting anti-dengue IgG, DM, and moderate to severe CKD were associated with severe dengue. Moreover, female sex and severe dengue were associated with a significantly higher risk of death. CONCLUSIONS: Our findings highlight the importance of timely serological testing in elderly patients to identify potential secondary infections and focus on the meticulous management of elderly patients with DM or moderate to severe CKD to reduce dengue-related death.


Assuntos
Vírus da Dengue , Dengue , Insuficiência Renal Crônica , Dengue Grave , Idoso , Humanos , Feminino , Sorogrupo , Dengue/diagnóstico , Dengue/epidemiologia , Dengue Grave/epidemiologia , Taiwan/epidemiologia , Surtos de Doenças , Insuficiência Renal Crônica/epidemiologia
5.
J Microbiol Immunol Infect ; 56(6): 1121-1128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919172

RESUMO

BACKGROUND: Vaccine stability is an important issue for vaccine development, which affects whether the vaccine product is effective within a certain period of time in each progress. Hand, foot, and mouth diseases (HFMD) is an epidemic disease in young children usually caused by Enterovirus A group viruses, and the Enterovirus A71 (EV-A71) had caused several pandemics and public health issues around the world. After two decades of research and development, formalin-inactivated EV-A71 (FI-EV-A71) vaccines are the first to complete the phase III clinical trials for protection against EV-A71 infection. Currently, the shelf life of FI-EV-A71 vaccine product is set to be within 18 months, but the stability and the effectiveness of the FI-EV-A71 whole virion when stored long-term at low temperature remains undetermined. METHODS: Assessing the long-term storage properties of viral particles facilitates flexibility in manufacturing of vaccine products. In this study, the stability profiles of FI-EV-A71 vaccine lots and bulks after long-term of low temperature storage were analyzed by protein tests, particle measurement and animal immunization study. RESULTS: After over ten years of storage, the reduction of protein concentration in the FI-EV-A71 bulk samples is less than 30 % and the antigenic content remained in a suspended, particulate state. Both the packed FI-EV-A71 final vaccine products and the FI-EV-A71 antigens adjuvant premix bulk could elicit strong neutralizing responses in mice. CONCLUSION: After ten years of low temperature storage, the FI-EV-A71 vaccine still presents decent stability and good immunogenicity.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Vacinas Virais , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Vacinas de Produtos Inativados , Temperatura , Infecções por Enterovirus/prevenção & controle , Antígenos Virais , Vírion
6.
J Med Virol ; 95(8): e29040, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37635380

RESUMO

Protein subunit vaccines have been used as prophylactic vaccines for a long time. The well-established properties of these vaccines make them the first choice for the coronavirus disease 2019 (COVID-19) outbreak. However, it is not easy to develop a protein vaccine that induces cytotoxic T lymphocyte responses and requires a longer time for manufacturing, which limits the usage of this vaccine type. Here, we report the combination of a recombinant spike (S)-trimer protein with a DNA vaccine-encoded S protein as a novel COVID-19 vaccine. The recombinant S protein was formulated with different adjuvants and mixed with the DNA plasmid before injection. We found that the recombinant S protein formulated with the adjuvant aluminum hydroxide and mixed with the DNA plasmid could enhance antigen-specific antibody titers, neutralizing antibody titers. We further evaluated the IgG2a/IgG1 isotype and cytokine profiles of the specific boosted T-cell response, which indicated that the combined vaccine induced a T-helper 1 cell-biased immune response. Immunized hamsters were challenged with severe acute respiratory syndrome coronavirus 2, and the body weight of the hamsters that received the recombinant S protein with aluminum hydroxide and/or the DNA plasmid was not reduced. Alternatively, those that received control or only the DNA plasmid immunization were reduced. Interestingly, after the third day of the viral load in the lungs, the viral challenge could not be detected in hamsters immunized with the recombinant S protein in aluminum hydroxide mixed with DNA (tissue culture infectious dose < 10). The viral load in the lungs was 109 , 106 , and 107 for the phosphate-buffered saline, protein in aluminum hydroxide, and DNA-only immunizations, respectively. These results indicated that antiviral mechanisms neutralizing antibodies play important roles. Furthermore, we found that the combination of protein and DNA vaccination could induce relatively strong CD8+ T-cell responses. In summary, the protein subunit vaccine combined with a DNA vaccine could induce strong CD8+ T-cell responses to increase antiviral immunity for disease control.


Assuntos
COVID-19 , Vacinas de DNA , Humanos , Animais , Cricetinae , SARS-CoV-2/genética , Hidróxido de Alumínio , Vacinas contra COVID-19 , Subunidades Proteicas , COVID-19/prevenção & controle , DNA , Imunidade Celular , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Antivirais
7.
NPJ Vaccines ; 8(1): 82, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268688

RESUMO

Formyl peptide receptor-like 1 inhibitor protein (FLIPr) is an immune evasion protein produced by Staphylococcus aureus, and FLIPr is a potential vaccine candidate for reducing Staphylococcus aureus virulence and biofilm formation. We produced recombinant lipidated FLIPr (rLF) to increase the immunogenicity of FLIPr and showed that rLF alone elicited potent anti-FLIPr antibody responses to overcome the FLIPr-mediated inhibition of phagocytosis. In addition, rLF has potent immunostimulatory properties. We demonstrated that rLF is an effective adjuvant. When an antigen is formulated with rLF, it can induce long-lasting antigen-specific immune responses and enhance mucosal and systemic antibody responses as well as broad-spectrum T-cell responses in mice. These findings support further exploration of rLF in the clinic as an adjuvant for various vaccine types with extra benefits to abolish FLIPr-mediated immunosuppressive effects.

8.
J Biomed Sci ; 30(1): 41, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316861

RESUMO

BACKGROUND: Flavivirus causes many serious public health problems worldwide. However, licensed DENV vaccine has restrictions on its use, and there is currently no approved ZIKV vaccine. Development of a potent and safe flavivirus vaccine is urgently needed. As a previous study revealed the epitope, RCPTQGE, located on the bc loop in the E protein domain II of DENV, in this study, we rationally designed and synthesized a series of peptides based on the sequence of JEV epitope RCPTTGE and DENV/ZIKV epitope RCPTQGE. METHODS: Immune sera were generated by immunization with the peptides which were synthesized by using five copies of RCPTTGE or RCPTQGE and named as JEV-NTE and DV/ZV-NTE. Immunogenicity and neutralizing abilities of JEV-NTE or DV/ZV-NTE-immune sera against flavivirus were evaluated by ELISA and neutralization tests, respectively. Protective efficacy in vivo were determined by passive transfer the immune sera into JEV-infected ICR or DENV- and ZIKV-challenged AG129 mice. In vitro and in vivo ADE assays were used to examine whether JEV-NTE or DV/ZV-NTE-immune sera would induce ADE. RESULTS: Passive immunization with JEV-NTE-immunized sera or DV/ZV-NTE-immunized sera could increase the survival rate or prolong the survival time in JEV-challenged ICR mice and reduce the viremia levels significantly in DENV- or ZIKV-infected AG129 mice. Furthermore, neither JEV -NTE- nor DV/ZV-NTE-immune sera induced antibody-dependent enhancement (ADE) as compared with the control mAb 4G2 both in vitro and in vivo. CONCLUSIONS: We showed for the first time that novel bc loop epitope RCPTQGE located on the amino acids 73 to 79 of DENV/ZIKV E protein could elicit cross-neutralizing antibodies and reduced the viremia level in DENV- and ZIKV-challenged AG129 mice. Our results highlighted that the bc loop epitope could be a promising target for flavivirus vaccine development.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Camundongos Endogâmicos ICR , Anticorpos Neutralizantes , Viremia , Soros Imunes , Epitopos , Fatores de Transcrição
9.
J Microbiol Immunol Infect ; 56(4): 875-879, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37188572

RESUMO

High-level levofloxacin-resistant group A Streptococcus emerged in Taiwan in 2012. Among the 24 isolates identified, 23 belonged to emm12/ST36, most harbored the same GyrA and ParC mutations and were highly clonal. wgMLST showed them to be closely related to the Hong Kong scarlet fever outbreak strains. Continuous surveillance is warranted.


Assuntos
Escarlatina , Infecções Estreptocócicas , Humanos , Levofloxacino/farmacologia , Taiwan/epidemiologia , Streptococcus pyogenes , Escarlatina/tratamento farmacológico , Escarlatina/epidemiologia , Hong Kong , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/tratamento farmacológico , Farmacorresistência Bacteriana/genética
10.
Microbiol Spectr ; 11(1): e0358622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36629424

RESUMO

Four serotypes of dengue virus (DENV-1 to DENV-4) cause mild to severe disease in humans through infected mosquito bites. Dermal fibroblasts were found to be susceptible to DENV, and this may play a critical role in establishing the initial infection stage. However, the cellular response induced by the different DENV serotypes in dermal fibroblasts during the early stage of infection remains unclear. To determine this, normal human dermal fibroblast WS1 cells were infected with DENV-1 or DENV-2. Compared with the response elicited by DENV-1 infection, DENV-2 induced a stronger innate inflammatory response and cell death in the WS1 cells. However, DENV-1 activated a higher level of pyroptosis signaling than did DENV-2, which was associated with higher virion production. Caspase-1 inhibitor Ac-YVAD-cmk and imipramine, an antidepressant drug, reduced DENV-mediated caspase-1 and interleukin 1ß (IL-ß) cleavage in the pyroptosis pathway. Ac-YVAD-cmk and imipramine downregulated DENV virion production in WS1 cells. Furthermore, DENV-1 and DENV-2 NS1 proteins promoted diverse activation levels of cell death, inflammatory response, and activation of caspase-1 and IL-ß in dermal fibroblasts at different time points. Collectively, these data suggest that DENV-1, DENV-2, and their nonstructural protein 1 (NS1) induce discrepant activation patterns of inflammation and pyroptosis in dermal fibroblasts. The pyroptosis caused by virus and NS1 may facilitate DENV replication in dermal fibroblasts. IMPORTANCE Skin fibroblasts are the primary cells of DENV infection through mosquito bites. Establishing a successful infection in dermal fibroblasts might be critical for dengue disease. However, the cellular response induced by DENV in dermal fibroblasts remains unclear. In this in vitro study, we found that DENV-2 and DENV-1 showed different time course patterns of virus replication and inflammation in dermal fibroblasts. We demonstrated that DENV-1 and DNEV-2 and their viral protein NS1 activate the cellular pyroptosis response to regulate virus replication in dermal fibroblasts. This finding suggests that pyroptosis activation in the DENV primary inoculation site plays a role in the establishment of a DENV infection.


Assuntos
Vírus da Dengue , Dengue , Mordeduras e Picadas de Insetos , Humanos , Vírus da Dengue/metabolismo , Piroptose , Sorogrupo , Imipramina , Mordeduras e Picadas de Insetos/complicações , Inflamação , Caspase 1/metabolismo , Fibroblastos/metabolismo
12.
J Med Virol ; 95(1): e28370, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458553

RESUMO

The major challenge in COVID-19 vaccine effectiveness is immune escape by SARS-CoV-2 variants. To overcome this, an Omicron-specific messenger RNA (mRNA) vaccine was designed. The extracellular domain of the spike of the Omicron variant was fused with a modified GCN4 trimerization domain with low immunogenicity (TSomi). After immunization with TSomi mRNA in hamsters, animals were challenged with SARS-CoV-2 virus. The raised nonneutralizing antibodies or cytokine secretion responses can recognize both Wuhan S and Omicron S. However, the raised antibodies neutralized SARS-CoV-2 Omicron virus infection but failed to generate Wuhan virus neutralizing antibodies. Surprisingly, TSomi mRNA immunization protected animals from Wuhan virus challenge. These data indicated that non-neutralizing antibodies or cellular immunity may play a more important role in vaccine-induced protection than previously believed. Next-generation COVID-19 vaccines using the Omicron S antigen may provide sufficient protection against ancestral or current SARS-CoV-2 variants.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19 , Anticorpos Neutralizantes , COVID-19/prevenção & controle , RNA Mensageiro/genética , Vacinas de mRNA , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
13.
J Chromatogr A ; 1680: 463427, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36029731

RESUMO

Virions produced from cell culture is the primary source for production of formalin-inactivated whole virus vaccines for enteroviruses. EV-A71 particles produced from culture system comprise two major types, the immature/empty (E)-particle and the mature/full (F)-particle, which both exhibit low isoelectric point (pI) values but have distinct differences in infectivity and immunogenicity. Although EV-A71 particles can conventionally be separated into E-particle and F-particle using sucrose gradient ultracentrifugation, this procedure is cumbersome and difficult to put into practice for vaccine production. Methods based on ion-exchange chromatography have been exploited to improve the purification efficacy; however, none of them are capable of separating the E- and F-particles efficiently. In this study, we aimed to develop an approach to isolate and purify the highly immunogenic mature EV-A71 particles. By applying a step gradient elution procedure, we successfully isolated the viral structure protein VP0-cleaved particles of EV-A71 from a mixture of cultured viral solution using the Q-membrane anion-exchange chromatography. The elution started with 0.1x phosphate buffered saline (PBS) solution while increasing the percentage of 1x PBS containing 1M NaCl in sequential steps. By this procedure, the VP0-cleaved mature particles and VP0-uncleaved immature particles of EV-A71 could be separated into different fractions in Q-membrane with gradually increased NaCl concentration in elution buffer. The purified VP0-cleaved particles were shown to have characteristics equivalent to those of the highly infectious F-particles of EV-A71. The overall recovery rate for the mature EV-A71 particles by Q-membrane is 56% and its purity was shown to be equivalent to those isolated by the sucrose gradient ultracentrifugation. Our approach provides a simple and efficient purification method for recovering mature, highly infectious virus particles from the EV-A71 culture bulk.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Ânions , Antígenos Virais , Infecções por Enterovirus/prevenção & controle , Humanos , Cloreto de Sódio , Sacarose
14.
NPJ Vaccines ; 7(1): 60, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35662254

RESUMO

A major challenge in the use of DNA vaccines is efficient DNA delivery in vivo. Establishing a safe and efficient electric transfer method is the key to developing rapid DNA vaccines against emerging infectious diseases. To overcome the complexity of designing new electric transfer machines for DNA delivery, a clinically approved electric transfer machine could be considered as an alternative. Here, we report an electroacupuncture machine-based method for DNA vaccine delivery after intramuscular injection of the COVID-19 DNA vaccine. The S gene of SARS-CoV-2 in the pVAX1 plasmid (pSARS2-S) was used as an antigen in this study. We optimized the clinically used electroacupuncture machine settings for efficient induction of the neutralizing antibody titer after intramuscular injection of pSARS2-S in mice. We found that pSARS2-S immunization at 40 Vpp for 3-5 s could induce high neutralizing antibody titers and Th1-biased immune responses. IFN-γ/TNF-α-secreting CD4+ and CD8+ T cells were also observed in the DNA vaccination group but not in the recombinant protein vaccination group. T-cell epitope mapping shows that the major reactive epitopes were located in the N-terminal domain (a.a. 261-285) and receptor-binding domain (a.a. 352-363). Importantly, pSARS2-S immunization in hamsters could induce protective immunity against SARS-CoV-2 challenge in vivo. In the preclinical toxicology study, blood biochemistry, hematology, and DNA persistence analysis reveal that the DNA delivery method is safe. Furthermore, the raised antisera could also cross-neutralize different variants of concern. These findings suggest that DNA vaccination using an electroacupuncture machine is feasible for use in humans in the future.

15.
Front Cell Infect Microbiol ; 12: 862656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656028

RESUMO

Objectives: To assess humoral and cellular immune responses against SARS-CoV-2 variants in COVID-19 convalescent and confirmed patients, to explore the correlation between disease severity, humoral immunity, and cytokines/chemokines in confirmed patients, and to evaluate the ADE risk of SARS-CoV-2. Methods: Anti-RBD IgG were quantified using an ELISA. Neutralization potency was measured using pseudovirus and real virus. Cellular immunity was measured using ELISpot. Cytokine/chemokine levels were detected using multiplex immunoassays. In vitro ADE assays were performed using Raji cells. Results: One-month alpha convalescents exhibited spike-specific antibodies and T cells for alpha and delta variants. Notably, the RBD-specific IgG towards the delta variant decreased by 2.5-fold compared to the alpha variant. Besides, serum from individuals recently experienced COVID-19 showed suboptimal neutralizing activity against the delta and omicron variants. Humoral immune response, IL-6, IP-10 and MCP-1 levels were greater in patients with severe disease. Moreover, neither SARS-CoV-1 nor SARS-CoV-2 convalescent sera significantly enhanced SARS-CoV-2 pseudovirus infection. Conclusions: Significant resistance of the delta and omicron variants to the humoral immune response generated by individuals who recently experienced COVID-19. Furthermore, there was a significant correlation among disease severity, humoral immune response, and specific cytokines/chemokine levels. No evident ADE was observed for SARS-CoV-2.


Assuntos
COVID-19 , Citocinas , Imunidade Celular , Imunidade Humoral , SARS-CoV-2 , COVID-19/imunologia , Citocinas/imunologia , Humanos , Imunoglobulina G , Índice de Gravidade de Doença
16.
J Biomed Sci ; 29(1): 37, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681239

RESUMO

BACKGROUND: Calls for the coronavirus to be treated as an endemic illness, such as the flu, are increasing. After achieving high coverage of COVID-19 vaccination, therapeutic drugs have become important for future SARS-CoV-2 variant outbreaks. Although many monoclonal antibodies have been approved for emergency use as treatments for SARS-CoV-2 infection, some monoclonal antibodies are not authorized for variant treatment. Broad-spectrum monoclonal antibodies are unmet medical needs. METHODS: We used a DNA prime-protein boost approach to generate high-quality monoclonal antibodies. A standard ELISA was employed for the primary screen, and spike protein-human angiotensin-converting enzyme 2 blocking assays were used for the secondary screen. The top 5 blocking clones were selected for further characterization, including binding ability, neutralization potency, and epitope mapping. The therapeutic effects of the best monoclonal antibody against SARS-CoV-2 infection were evaluated in a hamster infection model. RESULTS: Several monoclonal antibodies were selected that neutralize different SARS-CoV-2 variants of concern (VOCs). These VOCs include Alpha, Beta, Gamma, Delta, Kappa and Lambda variants. The high neutralizing antibody titers against the Beta variant would be important to treat Beta-like variants. Among these monoclonal antibodies, mAb-S5 displays the best potency in terms of binding affinity and neutralizing capacity. Importantly, mAb-S5 protects animals from SARS-CoV-2 challenge, including the Wuhan strain, D614G, Alpha and Delta variants, although mAb-S5 exhibits decreased neutralization potency against the Delta variant. Furthermore, the identified neutralizing epitopes of monoclonal antibodies are all located in the receptor-binding domain (RBD) of the spike protein but in different regions. CONCLUSIONS: Our approach generates high-potency monoclonal antibodies against a broad spectrum of VOCs. Multiple monoclonal antibody combinations may be the best strategy to treat future SARS-CoV-2 variant outbreaks.


Assuntos
Anticorpos Monoclonais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Vacinas contra COVID-19 , Cricetinae , Humanos , Glicoproteína da Espícula de Coronavírus/genética
17.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563292

RESUMO

During the sustained COVID-19 pandemic, global mass vaccination to achieve herd immunity can prevent further viral spread and mutation. A protein subunit vaccine that is safe, effective, stable, has few storage restrictions, and involves a liable manufacturing process would be advantageous to distribute around the world. Here, we designed and produced a recombinant spike (S)-Trimer that is maintained in a prefusion state and exhibits a high ACE2 binding affinity. Rodents received different doses of S-Trimer (0.5, 5, or 20 µg) antigen formulated with aluminum hydroxide (Alum) or an emulsion-type adjuvant (SWE), or no adjuvant. After two vaccinations, the antibody response, T-cell responses, and number of follicular helper T-cells (Tfh) or germinal center (GC) B cells were assessed in mice; the protective efficacy was evaluated on a Syrian hamster infection model. The mouse studies demonstrated that adjuvating the S-Trimer with SWE induced a potent humoral immune response and Th1-biased cellular immune responses (in low dose) that were superior to those induced by Alum. In the Syrian hamster studies, when S-Trimer was adjuvanted with SWE, higher levels of neutralizing antibodies were induced against live SARS-CoV-2 from the original lineage and against the emergence of variants (Beta or Delta) with a slightly decreased potency. In addition, the SWE adjuvant demonstrated a dose-sparing effect; thus, a lower dose of S-Trimer as an antigen (0.5 µg) can induce comparable antisera and provide complete protection from viral infection. These data support the utility of SWE as an adjuvant to enhance the immunogenicity of the S-Trimer vaccine, which is feasible for further clinical testing.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Células Th1 , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/farmacologia , Cricetinae , Emulsões , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Células Th1/imunologia
18.
JCI Insight ; 7(8)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290246

RESUMO

Most therapeutic mAbs target the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. Unfortunately, the RBD is a hot spot for mutations in SARS-CoV-2 variants, which will lead to loss of the neutralizing function of current therapeutic mAbs. Universal mAbs for different variants are necessary. We identified mAbs that recognized the S2 region of the spike protein, which is identical in different variants. The mAbs could neutralize SARS-CoV-2 infection and protect animals from SARS-CoV-2 challenge. After cloning the variable region of the light chain and heavy chain, the variable region sequences were humanized to select a high-affinity humanized mAb, hMab5.17. hMab5.17 protected animals from SARS-CoV-2 challenge and neutralized SARS-CoV-2 variant infection. We further identified the linear epitope of the mAb, which is not mutated in any variant of concern. These data suggest that a mAb recognizing the S2 region of the spike protein will be a potential universal therapeutic mAb for COVID-19.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
19.
Vaccine ; 40(4): 574-586, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34952759

RESUMO

A series of recombinant human type 5 adenoviruses that express the full-length or membrane-truncated spike protein (S) of SARS-CoV-2 (AdCoV2-S or AdCoV2-SdTM, respectively) was tested the efficacy against SARS-CoV-2 via intranasal (i.n.) or subcutaneous (s.c.) immunization in a rodent model. Mucosal delivery of adenovirus (Ad) vaccines could induce anti-SARS-CoV-2 IgG and IgA in the serum and in the mucosal, respectively as indicated by vaginal wash (vw) and bronchoalveolar lavage fluid (BALF). Serum anti-SARS-CoV-2 IgG but not IgA in the vw and BALF was induced by AdCoV2-S s.c.. Administration of AdCoV2-S i.n. was able to induce higher anti-SARS-CoV-2 binding and neutralizing antibody levels than s.c. injection. AdCoV2-SdTM i.n. induced a lower antibody responses than AdCoV2-S i.n.. Induced anti-S antibody responses by AdCoV2-S via i.n. or s.c. were not influenced by the pre-existing serum anti-Ad antibody. Novelty, S-specific IgG1 which represented Th2-mediated humoral response was dominantly induced in Ad i.n.-immunized serum in contrast to more IgG2a which represented Th1-mediated cellular response found in Ad s.c.-immunized serum. The activation of S-specific IFN-É£ and IL-4 in splenic Th1 and Th2 cells, respectively, was observed in the AdCoV2-S i.n. and s.c. groups, indicating the Th1 and Th2 immunity were activated. AdCoV2-S and AdCoV2-SdTM significantly prevented body weight loss and reduced pulmonary viral loads in hamsters. A reduction in inflammation in the lungs was observed in AdCoV-S via i.n. or s.c.-immunized hamsters following a SARS-CoV-2 challenge. It correlated to Th1 cytokine but no inflammatory cytokines secretions found in AdCoV-S i.n. -immunized BALF. These results indicate that intranasal delivery of AdCoV2-S vaccines is safe and potent at preventing SARS-CoV-2 infections.


Assuntos
Vacinas contra Adenovirus , COVID-19 , Animais , Anticorpos Antivirais , Vacinas contra COVID-19 , Cricetinae , Feminino , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
20.
Front Oncol ; 11: 733555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888232

RESUMO

INTRODUCTION: Ste20-related protein proline/alanine-rich kinase (SPAK) affects cell proliferation, differentiation, and transformation, and sodium and chloride transport in the gut. However, its role in gut injury pathogenesis is unclear. OBJECTIVE: We determined the role of SPAK in chemotherapy-induced intestinal mucositis using in vivo and in vitro models. METHODS: Using SPAK-knockout (KO) mice, we evaluated the severity of intestinal mucositis induced by 5-fluorouracil (5-FU) by assessing body weight loss, histological changes in the intestinal mucosa, length of villi in the small intestine, pro-inflammatory cytokine levels, proliferative indices, and apoptotic indices. We also evaluated changes in gut permeability and tight junction-associated protein expression. Changes in cell permeability, proliferation, and apoptosis were assessed in SPAK siRNA-transfected 5FU-treated IEC-6 cells. RESULTS: 5-FU-treated SPAK-KO mice exhibited milder intestinal mucositis, reduced pro-inflammatory cytokine expression, increased villus length, good maintenance of proliferative indices of villus cells, decreased apoptotic index of enterocytes, reduced gut permeability, and restoration of tight junction protein expression (vs. 5-FU-treated wild-type mice). Under in vitro conditions, siRNA-mediated SPAK-knockdown in IEC-6 cells decreased cell permeability and maintained homeostasis following 5-FU treatment. CONCLUSION: SPAK deficiency attenuated chemotherapy-induced intestinal mucositis by modulating gut permeability and tight junction-associated protein expression and maintaining gut homeostasis in murine small intestinal tissues following gut injury. The expression of SPAK may influence the pathogenesis of chemotherapy-induced intestinal mucositis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...